最高エネルギー宇宙線観測

宇宙線望遠鏡実験

荻尾 彰一(大阪市立大学)

On behalf of the Telescope Array Collaboration

(「地文台によるサイエンス」@甲南大学 2006年3月9日での講演より抜粋)

The Telescope Array (TA) Collaboration

H.Kawai^a, S.Yoshida^a, H.Yoshii^b, K.Tanaka^c, F.Cohen^d, E.Kido^d, M.Fukushima^d, N.Hayashida^d,
K.Hiyama^d, D.Ikeda^d, M.Ohnishi^d, H.Ohoka^d, S.Ozawa^d, H.Sagawa^d, N.Sakurai^d, T.Shibata^d,
H.Shimodaira^d, M.Takeda^d, A.Taketa^d, M.Takita^d, H.Tokuno^d, R.Torii^d, S.Udo^d, H.Fujii^e,
T.Matsuda^e, M.Tanaka^e, H.Yamaoka^e, K.Hibino^f, T.Benno^g, M.Chikawa^g, T.Nakamura^h,
M.Teshimaⁱ, K.Kadota^j, Y.Uchihori^k, K.Hayashi^l, Y.Hayashi^l, S.Kawakami^l, K.Matsumoto^l,
Y.Matsumoto^l, T.Matsuyama^l, M.Minamino^l, T.Nonaka^l, S.Ogio^l, A.Ohshima^l, T.Okuda^l,
N.Shimizu^l, H.Tanaka^l, D.R.Bergman^m, G.Hughes^m, S.Stratton^m, G.B.Thomson^m, K.Endoⁿ,
N.Inoueⁿ, S.Kawanaⁿ, Y.Wadaⁿ, K.Kasahara^o, M.Fukuda^p, T.Iguchi^p, F.Kakimoto^p, S.Machida^p,
R.Minakawa^p, Y.Murano^p, Y.Tameda^p, Y.Tsunesada^p, J.W.Belz^{qs}, J.A.J.Matthews^r, T.Abu-Zayyad^s, R.Cady^s, Z.Cao^s, P.Huentemeyer^s, C.C.H.Jui^s, K.Martens^s, J.N.Matthews^s, J.D.Smith^s,
P.Sokolsky^s, R.W.Springer^s, S.B.Thomas^s, L.R.Wiencke^s, T.Doyle^t, M.J.Taylor^t, V.B.Wickwar^t,
T.D.Wilkerson^t, K.Hashimoto^u, K.Honda^u, T.Ishii^u, K.Ikuta^u, T.Kanbe^u

(a) Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba-shi, Chiba, 263-8522 Japan	(k) National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-shi,
(b) Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577 Japan	263-8555 Japan
(c) Hiroshima City University, 3-4-1 Ozuka-Higashi, Asa-Minami-Ku, Hiroshima,	(1) Osaka City University, 3-3-138 Sugimotocho, Sumiyoshi-ku, Osaka, 558-8585
731-3194 Japan	Japan
(d) ICRR, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8582 Japar	(m) Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854, USA
(e) Institute of Particle and Nuclear Studies, KEK, 1-1 Oho, Tsukuba, Ibaraki, 305-	(n) Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570 Japan
0801 Japan	(o) Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama, 337-8570
(f) Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama,	Japan
Kanagawa, 221-8686 Japan	(p) Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550
(g) Kinki University, 3-4-1 Kowakae, Higashi-Osaka City, 577-8502 Japan	Japan
(h) Kochi University, 2-5-1 Akebonocho, Kochi, 780-8520 Japan	(q) University of Montana , 32 Campus Drive, Missoula, MT 59812, USA
(i) Max-Planck-Institute for Physics, Foehringer Ring 6, 80805 Muenchen, Germany	(r) University of New Mexico, Albuquerque, NM 87131 USA
(j) Musashi Institute of Technology, 1-28-1 Tamazutsumi, Setagaya-ku, Tokyo, 158-	(s) University of Utah, 115 S 1400 E, Salt Lake City, UT 84112, USA
8557 Japan	(t) Utah State University, Logan UT 84322, USA
	(u) Yamanashi University,4-4-37 Takeda, Kofu, Yamanashi, 400-8510 Japan

宇宙線とは?

- 宇宙空間を飛び交う高エネルギー粒子 ほとんどは陽子・原子核 10⁹eV - 10²⁰eV以上
- 電荷を持つ=銀河磁場と相互作用 直進しない=点源が見えない 銀河磁場 3マイクロガウス~3×10⁻¹⁰テスラ (ちなみに地磁気は3×10⁻⁵テスラ)

宇宙線のエネルギースペクトル

M.Honda, M.Teshima

FIG. 1: Full sky map (area preserving projection) of deflection angles for UHECRs with energy 4×10^{19} eV using a linear color scale. All structure within a radius of 107 Mpc around the position of the Galaxy was used. The coordinate system is galactic, with the galactic anti-center in the middle of the map. Positions of identified clusters are marked using the locations of the corresponding halos in the simulation.

FIG. 2: Cumulative fraction of the sky with deflection angle larger than $\delta_{\rm th}$, for several values of propagation distance (solid lines). We also include an extrapolation to 500 Mpc, assuming self similarity with $\alpha = 0.5$ (dashed line) or $\alpha = 0.8$ (dotted line). The assumed UHECR energy for all lines is 4.0×10^{19} eV.

K. Dolag, D.Grasso, V.Springel, and I.Tkachev, astro-ph/0410419

GZK cut off 高エネルギー粒子ほど,近くから(CMB ~ 6×10⁻⁴eVと反応) (Auger Design Report) 1022 5 N proton proton photopion proton pair 10²²eV 4 Energy (eV red shift limit З 10²¹eV 1021 photon+IR Iron log₁₀ Distance (Mpc) 2 1 10²⁰eV <mark>__20</mark> photon+radio 10²⁰eV 0 -1 photon+CMBR 10^{19} -2 102 10^{3} 10^{0} 101 10^{4} Propagation Distance (Mpc) -3 100Mpc 12 16 18 20 22 24 10 0.01 Redshift z 0.001 $\theta.1$ (Auger Design Report) (D[Mpc] ~ 6000 z)-100 Mpc 100 kpc 10 Mpc 10 Gpc 0 1 kpc 10 kpc 1 Mpc 1 Gpc Vela pulsar G.C. LMC M31 GZK limit Mkn 421 3C279 Cen A (400pc?) (9kpc) (50kpc) (760kpc) (z=0.0009)(50Mpc) (z=0.031)(z=0.54)Virgo cluster Crab nebula Dia. of Galaxy local group Mkn 501 (16 Mpc)(30 kpc) (1.5Mpc) (z=0.055) (1,7kpc) Coma cluster 3C271

(z-0.16)

(100Mpc)

AGASA (Akeno Giant Air Shower Array)

Origin of UHECRs?

Astrophysical? or Cosmological?

Super-GZK?

Astrophysical Origin: フェルミ加速(衝撃波加速)

$$\Delta E = \xi E, \quad \frac{\mathrm{d}E}{\mathrm{d}t} = \frac{\xi E}{T_{cycle}}$$
$$N(>E) \propto \frac{1}{P_{esc}} \left(\frac{E}{E_0}\right)^{-\gamma}, \quad \gamma \approx \frac{P_{esc}}{\xi}$$

 Tcycle:
 加速の1サイクル

 Pesc:
 加速領域から抜け出す確率

 E0:
 初期エネルギー

~1 で フラックス F E⁻⁽⁺¹⁾~E⁻² 〈 観測 F E⁻³

加速天体の大きさと磁場の関係: Hillas ダイアグラム

AGN/Galaxies

AGNモデルの基礎(?)

(J. P. Rachen and P. L. Biermann, 1993)

✓GZK cutoffは必ず現れる。 80 EeVくらい.

✓近傍のソースの数は限られるので異 方性が現れるだろう。

✓High Energy Endで組成が重くなる.

Luminous Infrared Galaxiesとの相関 (A.Smialkowski, M. Giller and W. Michalak, 2001)

✓AGASAのtripletとArp299(colliding galaxy pair, 70Mpc以内では最も明るい赤外線源)の よい位置相関.

✓80 EeV以上のイベントについては、等方的であるとする仮説、Luminous Infrared Galaxiesからの放射であるとする仮説、、どちらとも矛盾、

Cluster of galaxies

Cluster accretion shock (H, Kang, D. Ryu and T. W. Jones, 1996)

✓typical velocity ~1000-3000 km/s, radius ~ 5 Mpc ✓磁場~1µG $\checkmark E_{max} \sim 6 \times 10^{19} \text{ eV}$ (for protons)

Local Super Cluster中での伝播(P. Blasi and A. V. Olinto)

- ✓10¹⁹ eV以下の宇宙線は拡散的に伝播する. ✓10²⁰ eV以上ではほぼ直進する.
- ✓10-15 Mpc以内に少なくとも1つのsource.
- ✓North-South asymmetryがあるはず。 北側が優勢
- ✓点源は見えな〈てもよい(いままでの観測では).

✓強い磁場(10⁻⁸-10⁻⁷G)を仮定.

center (6h.0d)

Cornell univ.

Cosmological Origin primary particles ~ gamma-ray, neutrino

Z-burst model

✓UHE- と Clustering- (m =0.3eVで平均より10倍高密度) ✓Virgo, Perseus-Pisces, Hydra, Centaurus, Coma に集中(m > 0.3eV) ✓GeV gammaとの相関を見る必要あり

(S. Shingh and C.P. Ma, 2003)

Cosmological: Super Heavy Relic Particles

Source/Mechanism Identification

宇宙線望遠鏡実験:観測装置

宇宙線望遠鏡実験:大きさの比較

宇宙線望遠鏡実験:大気蛍光をステレオ観測する

地表検出器(SD)

検出器box

SDの内部構造

シンチレーター1.5x1.0m² x1.2cm x4

+ W L S F

SDの製作と設置(写真)

大気蛍光望遠鏡(FD):望遠鏡

テスト観測@ Millard county, Utah

An observed shower-like track (11 July, 2005)

Linac calibration

Geant4を用いた40MeV電子ビームSim.

他の観測グループ

HiRes Experiment Air Fluorescence detector

- Spherical Mirrors: Area = 5.1 m²
- 256 PMT pixels/mirror: 1 degree resolution

This slide was originally made by M.Teshima, for a lecture at OCU, and rearranged by S.Ogio

Pierre Auger Observatory

Hybrid measurement 1500 water tanks 3 Air fluorescence stations

Aperture ~ x30 AGASA SD >50%, FD 3-station

3.5mx3.5m mirror **440 PMTs** 30° x 29° F.O.V

10m²x1.5m water tank

1.5km separation

This slide was originally made by M.Teshima, for a lecture at OCU, and rearranged by S.Ogio

Auger SD/Hires Mono/AGASA spectrum

Systematic error の原因は?

◆大気蛍光の発光量, 大気透明度·大気の状態, 観測装置の状態
 ◆空気シャワーシミュレーション, 宇宙線の化学組成, エネルギー決定法

H. J. Drescher, A. Dumitru, and M. Strikman, P. R. L., 94, 231801(2005)
 H.J. Drescher, Proc. of ICRC HE.1.4, astro-ph/0512564

予想されるXmaxは,QGSjetとSibyllの中間

High Density QCDと空気シャワー

BBLモデルと標準的なSibyllモデル,QGSjetモデルを比較

1) H. J. Drescher, A. Dumitru, and M. Strikman, P. R. L., 94, 231801(2005)

2) H.J. Drescher, Proc. of ICRC HE.1.4, astro-ph/0512564

予想されるµのLDFは,QGSjetとSibyllの中間

一方,電磁成分のLDFは相互作用モデルにほとんど依らない

TA実験では,エネルギー決定の系統誤差に相互作用モデルの影響がほとんどない.
 SD単独でエネルギーを決定できる(FDとSDの系統誤差の検証)
 (その他)蛍光発光量,ステレオ観測,LINAC,大気モニター

まとめ

<u>最高エネルギー宇宙線</u>

Astrophysical: Cluster, AGN, GRB
 Cosmological: Relic particle, TD

Telescope Array

◆FD stereo(165 km²sr)

+ scintillator SD(800 km^2)

- ◆大気モニター, LI NAC
- ◆2007年本格稼動開始
- ◆他の利用法

Super-GZK?

TA (Stereo-Hybrid, Scintillator-SD, Calib.)

"Full" Telescope Array Delta Beaver Ridge